perm filename QUAL.TEX[1,RWF] blob sn#857722 filedate 1988-05-26 generic text, type C, neo UTF8
COMMENT ⊗   VALID 00002 PAGES
C REC  PAGE   DESCRIPTION
C00001 00001
C00002 00002	\input macro[1,mps]
C00004 ENDMK
C⊗;
\input macro[1,mps]
\magnification\magstephalf
\baselineskip 14pt
Don:
\bigskip
For a future AA qual problem
\bigskip
(1)  Let $S↓{nk}$ be the Stirling number of the First kind.  What is
the asymptotic behavior of $S↓{n,3}$/$S↓{n,1}$?

Answer:
$$\displaylines{{1\over 1\cdot2}+{1\over 1\cdot3}+{1\over 2\cdot3}
+{1\over 1\cdot4}+{1\over 2\cdot4}
+{1\over 3\cdot4}+{1\over 1\cdot5}+\cdots {1\over (n-1)↑n}\cr
\qquad={H↑2↓n - H↑{(2)}↓n \over 2}\approx {\ln n+\gamma )↑2 - {\pi↑2\over 6}\over 2}+
O{(1\over n)}\cr}$$
or

(2)  Express
$$\sum {1\over ijk} [1 ≤ i < j < k ≤ n]$$ 
in terms of Stirling numbers.

Answer: 
$$\displaylines{S↓{n+1,4}$/$(n+1)!}$$
\bye